Ligand Exchange in Ruthenocene

ENRIQUE ROMAN and DIDIER ASTRUC*

Laboratoire de Chimie des Organométalliques, Université de Rennes, ERA CNRS no. 477, Campus de Beaulieu, 30542 Rennes Cedex, France

Received June 18, 1979

Ruthenocene chemistry [1] is scarce compared to that of ferrocene [1a] and no ligand exchange has been examined. We report here that one cyclopentadienyl ring of ruthenocene can be exchanged with a polymethylarene (*scheme*) – an extension of the analogous reactions found for ferrocene by Nesmeyanov *et al.* [2].

More drastic conditions are needed than for ligand exchange in ferrocene: the reaction is induced by $AlCl_3/H_2O$ at 160–200 °C. In contrast to ferrocene [2], ruthenocene does not give ring exchange at 80 °C with benzene. At 190–200 °C in decalin, or neat at 250 °C, the ligand exchange reaction with hexamethylbenzene proceeds only with a 10% yield, whereas the yield of the ferrocene reaction reaches 60% [3]. This yield can be raised to 50% in the presence of water (Table I), a trend already examined with ferrocene [4-6]. The stoichiometry is now Cp₂Ru/AlCl₃/Al/H₂O/arene: 1/3/1/1/excess (decalin 190-200 °C, 8 hours). However, the ¹H and ¹³C NMR spectra of the salts resulting from this reaction show a mixture of several salts η^5 -C₅H₅Ru η^6 -C₆H_{6-n}- $(CH_3)_n^+$ resulting from extensive demethylation and disproportionation of hexamethylbenzene under the influence of AlCl₃/H₂O prior to complexation. With a ratio $C_6(CH_3)_6/H_2O$: 4/1, the signals of the arene ligand close to $\delta = 5 \text{ ppm/TMS}$ in the ¹H NMR spectrum show that on average 1/4 of the methyl groups have been replaced by hydrogens on the benzene ligand. No product is predominant, but a statistical distribution is observed showing that a thermodynamic equilibrium is attained more quickly than complexation – an illustration of the difficulty of cleaving a ruthenocene ring. Precedents for this problem are known [7, 8] and are part of the reason why the metal vapor technique is often a necessary tool to synthesize clean homoleptic complexes such as bis(arene)chromium [8]. In the absence of water, the reaction (vide supra) provides the desired salts in a purity of $\simeq 80\%$, the medium is still able to give protons from the hydrocarbon solvent [5] under these conditions but of course to a much lesser extent. After metathesis, η^{5} -C₅H₅Ru η^{6} -C₆(CH₃)₆⁺-PF₆ can be obtained in a pure form after two recrystallisations from acetone. Calcd for C17H23RuPF6: C, 43.10; H, 4.86. Found: C, 43.48; H, 4.88. M.Pt. (dec) 250 °C. I.R., cm⁻¹ (hexachlorobutadiene) 3140 (m), 2945 (w), 1550 (s), 1475 (m), 1430 (m), 1400 (s), 1320 (w), 1120 (w), 1060 (m).

Ligand Exchange	Cp ₂ M/AlCl ₃ /H ₂ O	Reaction Time and Temp.	Yield %	Reference	
Ferrocene/benzene	1/2/0	80 °C	80		
Ruthenocene/benzene	1/2/0	80 °C	0	This work	
Ferrocene/benzene	1/3/1	80 °C 90		4	
Ruthenocene/benzene	1/3/1	80 °C	0	This work	
Ferrocene/mesitylene	1/2/0	165 °C	40 (resp. 65)	2 (resp. 5)	
Ruthenocene/mesitylene	1/2/0	165 °C	5	This work	
Ferrocene/mesitylene	1/3/1	165 °C	90	This work	
Ruthenocene/mesitylene	1/3/1	165 °C	30	This work	
Ferrocene/HMB ^a	1/2/0	190 °C	60	3	
Ruthenocene/HMB	1/2/0	190 °C	10	This work	
Ferrocene/HMB	1/3/1	190 °C	95	This work	
Ruthenocene/HMB	henocene/HMB 1/3/1 190 °C		50 (mixture ^b)	This work	

TABLE I, Reaction Conditions.

^aHMB: hexamethylbenzene (reactions in decaline).

^bStatistical mixture. Starting from $H_2O/Cp_2Ru:1/4$, the same ratio of replacement of methyl groups by hydrogens was found by ¹H NMR. In all other reactions quoted in the table, a pure compound was obtained.

^{*}Author to whom correspondence should be addressed.

	δ (¹ H)			δ (¹³ C)		
	arene H	CH3	C5H5	arene C	СН3	C5H5
$[\eta^5 - C_6 H_5 Fe \eta^6 - C_6 H_3 (CH_3)_3]^* BF_4^-$	6.20	2.50	5.00	88.48	20.25	78.43
$[\eta^{5}-C_{5}H_{5}Ru \eta^{6}-C_{6}H_{3}(CH_{3})_{3}]^{+}BF_{4}$	6.18	2.36	5.31	88.15	20.15	81.79
$[\eta^{5}-C_{5}H_{5}Fe \eta^{6}-C_{6}(CH_{3})_{6}]^{+}BF_{4}^{-}$		2.54	4.69	91.0	18.65	80.17
$[\eta^{5}-C_{5}H_{5}Ru \eta^{6}-C_{6}(CH_{3})_{6}]^{+}BF_{4}^{-}$	-	2.50	5.30	90.3	19.3	82.4

TABLE II. NMR Data $(CD_3COCD_3)^a \delta$ (ppm)/TMS

^aFor ¹H NMR data of Fe sandwiches, see also ref. 3.

With mesitylene, the ligand exchange proceeds only with 5% yield under anhydrous conditions (165 °C, 8 hours), but the yield reaches 30% upon addition of water. Interestingly, the salt is now obtained pure even when water is added to the reaction mixture. Calcd for $C_{14}H_{17}RuPF_6$: C, 39.00; H, 3.94. Found: C, 39.44; H, 4.43. I.R., cm⁻¹ (hexachlorobutadiene) 3140 (m), 2950 (w), 1550 (s), 1475 (m), 1430 (m), 1400 (s), 1315 (w), 1115 (w), 1055 (m). M.Pt.: 195 °C.

The sandwich structures and the purities of these complexes are deduced from the singlet nature of the Cp, arene and CH₃ signals in the ¹H and ¹³C NMR spectra (Table II). The arene H and C have identical δ values for the Fe and Ru sandwiches. It is note-worthy that the Cp signals for the Ru complexes exhibit larger downfield shifts (by 0.3 to 0.6 ppm, ¹H and 2.2 to 3.4 ppm, ¹³C) than their iron analogues; these parallel the data reported for the d⁶ Cp₂M series [1a].

Other routes to $(\eta^5 - C_5 H_5 Ru \eta^6 - arene)^* X^-$ complexes are known [9], but this ligand exchange reaction from ruthenocene is a valuable alternative whenever the reactions can be carried out at 160–170 °C.

Acknowledgments

We thank the CNRS for financial support (ATP 3801).

References

- See for example a) M. Rosenblum, 'Chemistry of the Iron Group Metallocenes', Wiley, New York (1965);
 b) F. L. Hedberg and H. Rosenberg, J. Am. Chem. Soc., 95, 870 (1973); c) W. H. Morrison and D. N. Hendrickson, Inorg. Chem., 11, 2912 (1972); d) A. N. Nesmeyanov, A. A. Lubovich and S. P. Gubin, Izv. Akad. Nauk. SSSR, Ser. Khim., 8, 1823 (1972); e) O. Traverso, S. Sostero and G. A. Mazzochin, Inorg. Chim. Acta, 11, 237 (1974);
 f) L. I. Denisovitch, N. V. Zakurin, A. A. Bezrukova and S. P. Gubin, J. Organometal. Chem., 81, 207 (1974);
 g) V. I. Sokolov, P. V. Petrovskii, A. A. Koridze and O. A. Reutov, J. Organometal. Chem., 76, C15 (1974); h) K. R. Mann, W. H. Morrison and D. N. Hendrickson, Inorg. Chem., 13, 1180 (1974).
- 2 A. N. Nesmeyanov, N. A. Volkenau and I. N. Bolesova, Dokl. Akad. Nauk. SSSR, 149, 615 (1963) and Tetrahedron Let., 25, 1725 (1963).
- 3 I. U. Khand, P. L. Pauson and W. E. Watts, J. Chem. Soc., 2257 (1968).
- 4 A. N. Nesmeyanov, N. A. Volkenau, I. N. Bolesova and L. S. Polkovnikova, Koord. Khim., 1, 9, 1252 (1975).
- 5 D. Astruc and R. Dabard, J. Organometal. Chem., 111, 339 (1976).
- 6 E. Roman and D. Astruc, submitted to Inorg. Chem. (1979).
- 7 P. Bachmann, K. R. Repp and H. Singer, Z. Naturforsch., 32b, 471 (1977).
- 8 P. S. Skell and M. McGlinchey in 'Cryochemistry', Eds. M. Moskovits and G. A. Ozin, Wiley, New York, 1976, p. 167.
- 9 a) R. A. Zelonka and M. C. Baird, J. Organometal. Chem., 44, 383 (1972); b) M. J. Noltes, G. Gafner and L. M. Haines, Chem. Comm., 1406 (1969); c) T. H. Coffield and R. D. Closson, U.S. Patent, 3,130,214; Chem. Abstr., 61, 4397d.